RHIC S&T Overview

Agenda

- RHIC Status and overview of RHIC Run 15
- Plans for RHIC Run 16 and 17
- Recent science highlights
- Longer-range science and facility upgrade goals
- Collaboration management
- Budget issues

RHIC: Productivity and Impact

Collaboration	Total # Refereed Papers	Total # Citations for Ref'd Papers	# PRL's	# Citations for 2005 White Paper	Position Among Most Cited NP Papers 2001-14	# Papers with >250 Citations
PHENIX	142	18,812	66	1,923	4	17
STAR	171	19,673	65	2,008	3	19
PHOBOS	39	4,999	15	1,488	5	1
BRAHMS	22	3,477	10	1,462	6	3
Total	374	46,961	156	5,943	4 in top 10	40

3

NATIONAL I

RHIC related awards (2015)

- Ernest O. Lawrence Award:
 - Mei Bai
- APS Bonner Prize:
 - M. Gyulassy & H. Wieman
- APS Feshbach Prize:
 - L. Mcl erran
- BNL S&T Award:
 - Flemming Videbaek
- ATLAS Thesis Award
 - Dennis Perepelitsa
- Excellence Professor (U Heidelberg)
 - Raju Venugopalan

Mei Bai

Presented today at DOE HQ

RHIC: Recent Detector Upgrades

Fully reconstruct open charm/beauty hadrons with displaced vertex

Completed on schedule and below cost

Enhances triggering capabilities for heavy quarkonia

Small STAR upgrades

Roman Pots tag diffractive protons

Forward Meson Spectrometer with Pre-shower Detector

RHIC sets new records ...

Run-15 $p\uparrow+p\uparrow$ at $\sqrt{s} = 200 \text{ GeV}$

 $L = 25 \text{ pb}^{-1}/\text{week} (2.7 \times 2012)$

Run-15 integrated luminosity at \sqrt{s} = 200 GeV exceeds sum of all previous runs

... and shows its versatility

Run-15 p⁺+Au and p⁺+Al at \sqrt{s} = 200 GeV

2 new (asymmetric) operating modes – met or exceeded luminosity goals

Run 16 & 17 plans

PAC recommendations (in order of priority):

Run-16

- Au+Au at 100 GeV, 10 weeks
 56 MHz SRF, further increase in bunch intensity
- Au+p↑ (or p↑+Au or d+Au) at 100, 31.2, 20, 10 GeV/nucleon, 5 weeks
 PHENIX / STAR protection, task force set up
- p↑+p↑ at 31.2 GeV, 2 weeks
- Au+Au at 31.2 GeV, up to 4 weeks

Run-17

- p↑+p↑ at 255 GeV, ≥ 11 weeks
- Ru+Ru and Zr+Zr (A = 96 in both cases)
- p↑+p↑ at energies matching p+Au (d+Au) energy scan

Science Highlights

Shape Matters: U+U Collisions

STAR Collaboration arXiv:1505.07812

IP-Glasma model, but not NN Glauber model, consistent with observations.

→ Initial state fluctuations occur at the parton level

How small can a QGP droplet be?

Very successful 3-week run resulted in 2.2 billion recorded minimum bias

3He+Au collisions (PHENIX)

Characteristic differential elliptic flow for hadrons of different mass

p+Au run will be a critical test

Chiral Symmetry Restoration

Significant excess is observed in 0.3<M $_{ee}<$ 0.8 GeV/c 2 , representing the hot, dense medium contribution; described by a broadened ρ spectra function. Mapping the temperature and baryon-density dependence toward Chiral Symmetry Restoration (BES II goals)

Phys. Rev. Lett. 113 (2014) 22301 arXiv: 1504.01317, submitted to PRC

arXiv:1501.05341, submitted to PLB

Chiral Magnetic wave

Editors' Suggestion

Observation of Charge Asymmetry Dependence of Pion Elliptic Flow and the Possible Chiral Magnetic Wave in Heavy-Ion Collisions

L. Adamczyk et al. (STAR Collaboration)

Phys. Rev. Lett. 114, 252302 (2015) - Published 26 June 2015

A possible signature of chiral symmetry restoration, in the form of a chiral magnetic wave in the quark-gluon plasma, has been observed in heavy-ion collisions at RHIC.

Show Abstract +

- STAR has published a few papers on possible Chiral Magnetic Effect and potential background
- Implication beyond our field Continue research:
- U+U collisions
- BES I results on CME
- BES II with more statistics
- Chiral Magnetic Wave
- Chiral Vortical Effect

Baryon-baryon interactions

- Use RHIC as a hyperon factory to investigate hyperon-hyperon interactions.
- Input to baryon-baryon interaction models and study of the equation of state for neutron stars.
- The ΛΛ interaction is also closely related to the existence of the H dibaryon postulated in.

Antimatter hypertriton, Science 328 (2010) 58
Antimatter Hellium-4, Nature 473 (2011) 353

AA Correlation Function, PRL 114 (2015)022301
Antimatter nucleon interactions, to be submitted
Antimatter muonic atoms, STAR Preliminary
Glueball Search tagged by Roman Pots, run15

Dark photons?

Phys. Rev. D91 (2015) 031901

PHENIX: excellent electron ID and e⁺e⁻ mass resolution – huge sample of π⁰ Dalitz decays

Recent combined limits – WASA, HADES, A1, BaBar, PHENIX, NA62 – rule out essentially all parameter space for the minimal version of a dark photon explaining the (g-2)_µ anomaly

Jet quenching

Toward quantitative measurement of basic medium properties: *q-hat*

$$\frac{dE}{dx} = -C_2 \alpha_s \,\hat{q} \, L \qquad \frac{dE}{dx} = -C_2 \,\hat{e}$$

Radiative

Collisional

JET Collaboration

$$\frac{\hat{q}}{T^3} = \begin{cases} 4.6 \pm 1.2 & \text{at RHIC} \\ 3.7 \pm 1.4 & \text{at LHC} \end{cases}$$

Phys. Rev. C 90 (2014) 014909

Topical collaboration concept proves its merits

Softening of the Equation of State: v₁

Phys. Rev. Lett, 112 (2014) 162301

- Minimum in v₁ indicates a softening equation of state in the transition region of the phase diagram.
- Precision measurement requires BES-II data allowing dv_1/dy to be measured with tightly specified centrality.

Δg from π^0 and jets @ RHIC

Gluons may contribute 70% of the proton spin

Transverse spin structure of the proton

Transverse single spin asymmetries (TSSA) give access to transversity δq_f \rightarrow critical together with q_f and Δq_f for a complete description of the proton wave function

 $p\uparrow+p \rightarrow \pi^+\pi^-+X$ transversity x new spin-dependent FF (interference FF)

- first significant non zero TSSA at mid-rapidity at √s=200GeV & √s=500GeV
- A_{UT} increasing with p_T

Future Science 2015-22

A whirlwind tour

New Questions

- Do the initial conditions for the hydrodynamic expansion contain unambiguous information about saturated gluon fields in nuclei?
- What is the smallest collision system that behaves collectively?
- What does the QCD phase diagram look like? Does it contain a critical point in the HG-QGP transition region? Does the HG-QGP transition become a first-order phase transition for large μ_B?
- What is the structure of the strongly coupled QGP at varying length scales? What makes it a liquid?
- What do Upsilon states tell us about quark deconfinement and hadronization?
- What do transversely polarized protons tell us about the coupled spin-momentum dynamics of QCD at different scales?

Heavy quarks probes

Suppression of mesons carrying open heavy flavor = energy loss of heavy quarks (*c*, *b*) explores mechanism of energy loss via medium color response.

Spectrum of heavy quarks is important for predicting c-cbar recombination.

Different mass quarks permit to distinguish different energy loss scenarios

Charm R_{AA} and elliptic flow

Initial conditions for A+A collisions

- unique RHIC capability: p[†]A
- Synergy between CGC based theory and transverse spin physics
- \square Is A_N suppressed with increasing A?
 - → first results run-15

Direct photon measurements can help separate strong interactions in entrance and exit channel in p+A collisions

 R_{DA} at 3< η <4: access to low x (10⁻⁴ – 10⁻⁵): First results from Run-15

Transverse polarized p+p collisions

Access the dynamic structure of protons:

- → Test and confirm QCD structure of color spin interactions
 - → Non-universality of transverse momentum dependent functions
 - \rightarrow Sivers_{DIS} = Sivers_{pp}
 - → Observable: A_N for Drell-Yan and W+/- production

- → Test scale evolution of transverse momentum dependent functions
 - → Observable: compare magnitude of A_N for Drell-Yan and W+/-

Scale: DY: Q² ~ 16 GeV² W+/-: Q² ~ 6400 GeV²

Toward critical fluctuations

Model independent structure of net baryon number kurtosis

The overarching scientific question:

How do asymptotically free quarks and gluons create the near-perfect liquidity of the QGP?

or

What degrees of freedom not manifest in the QCD Lagrangian produce the near-perfect liquidity of the QGP?

The (experimental) answer:

Deploy probes with a resolution that reaches well below the thermal ~ 1 fm scale of the bulk:

Jets & Upsilon states

Probing scales in the medium

Jets & Upsilon states

sPHENIX capabilities

Complete calorimetric jet spectroscopy

Completely resolved Upsilon spectroscopy

The Strategy

Completing the RHIC science mission

Status: RHIC-II configuration is complete

- Vertex detectors in STAR (HFT) and PHENIX
- Luminosity reaches 25x design luminosity

Plan: Complete the RHIC mission in 3 campaigns:

- 2014–17: Heavy flavor probes of the QGP using the micro-vertex detectors; Transverse spin physics
- 2018: Install low energy e-cooling
- 2019/20: High precision scan of the QCD phase diagram & search for critical point
- Install sPHENIX
- Probe QGP with precision measurements of jet quenching and Upsilon suppression
- Spin physics and initial conditions at forward rapidities with p+p and p+A collisions?
- Transition to eRHIC

RHIC remains a unique discovery facility

Proposed run schedule for RHIC

Years	Beam Species and	Science Goals	New Systems
2014	Au+Au at 15 GeV Au+Au at 200 GeV ³ He+Au at 200 GeV	Heavy flavor flow, energy loss, thermalization, etc. Quarkonium studies QCD critical point search	Electron lenses 56 MHz SRF STAR HFT STAR MTD
2015-16	pî+pî at 200 GeV pî+Au, pî+Al at 200 GeV High statistics Au+Au d(p)+Au energy scan	Extract η/s(T) + constrain initial quantum fluctuations Complete heavy flavor studies Sphaleron tests Parton saturation tests	PHENIX MPC-EX STAR FMS preshower Roman Pots Coherent e-cooling test
2017	p‡+p‡ at 510 GeV Ru+Ru vs. Zr+Zr (A=96)	Transverse spin physics Sign change in Sivers function Isobar test of chiral magnetic effect	
2018	No Run		Low energy e-cooling install. STAR iTPC upgrade?
2019-20	Au+Au at 5-20 GeV (BES-2)	Search for QCD critical point and onset of deconfinement	Low energy e-cooling iTPC Event plane detector
2021-22	Au+Au at 200 GeV p [†] +p [‡] , p [‡] +Au at 200 GeV	Jet, di-jet, γ-jet probes of parton transport and energy loss mechanism Color screening for different quarkonia Forward spin & initial state physics	sPHENIX Forward upgrades ?
≥ 2023 ?	No Runs		Transition to eRHIC

STAR Upgrades and Performance Enhancements

Incremental upgrades/enhancements can have big impact!

iTPC upgrade (2018)

Replace inner TPC Sectors Extend rapidity coverage Better particle ID Low p_⊤ coverage

Event Plane Detector

Tag diffractive protons

HCAL

FMS + pre-shower (2015) Refurbished HCAL (2016--2020) **Event Plane Detector (2018)**

inner TPC upgrade

Improved Event Plane Resolution Centrality definition Improved trigger Background rejection

An photon, jets, Drell-Yan; ridge, fluctuation, spectators

Low Energy e-Cooling for Au+Au

- Cooling of low energy heavy ion beams (3.8–10 GeV/n) with bunched electron beam increases luminosity by up factor 10
- Enables a QCD critical point search with a high statistics Beam Energy Scan
- Use either SRF electron gun or Cornell DC electron gun (for risk mitigation) and existing SRF cavity for cost effective implementation
- Stage 1: √s_{NN} ≤ 10 GeV; stage 2: √s_{NN} ≤ 20 GeV
- Cost: \$8.3M (stage 1)
- Complete installation in 2018, use in low energy RHIC runs in 2019-20

BES-II luminosity

sPHENIX exploded view

BaBar magnet @ BNL

Collaboration Management

No hard barriers to membership in more than one RHIC project

- Collaboration rules do not prohibit "dual" membership
- STAR is open to admitting members of PHENIX interested, e.g., in the physics of the beam energy scan
 - Some groups have already switched, e.g. Stony Brook Chemistry
- STAR is open to membership in both STAR and "sPHENIX" construction
 - Several STAR member groups have expressed interest in new detector.

STAR has been charged to reevaluate by October 2015 its physics potential after the Beam Energy Scan Phase 2

Brookhaven Science Associates 38

sPHENIX Detector Workshop

June 16 Workshop at BNL:

A Large-Acceptance Jet and Upsilon Detector for RHIC

- Information for those interested in joining a new collaboration for a detector around the BaBar magnet
- Discussion of collaboration forming process (provisional IB formation, working groups, preparation of constitutive meeting in late summer)
- Connection to community interested in Day-1 detector for EIC
- Agenda at https://indico.bnl.gov/conferenceDisplay.py?confld=1191

New collaboration is open to all this who are interested. So far, >60 institutions (including many international ones) have declared interest. Provisional institutional board will meet soon to decide on path forward.

Budget issues

- As expected, we have used up RHIC Ops carry-over
 - Modest shortfall in RHIC Ops funds ay end of FY15 expected
 - Need to reprogram ~\$1.5M AIP/CE FY15 funds to Operations
 - (>6% SLR increase, Run-14 electricity cost, BLIP, SMD labor)
- House FY16 budget would not allow for 22 week run
 - With PB and 22 week run: budgetary consequences
 - Minimal funding to run 15 weeks (\$171.5M)
- RHIC experiments: Reduce staff by ~10 to match B/A.
- Committee looks into allocation of expt'l operation funds between Physics & C-AD
- Nuclear theory: remains un(der)funded by ~\$1M
 - Stratmann not yet replaced (but promising candidate identified)
 - Strategic planning in progress (including role of RBRC)

Summary: Completing the RHIC mission

- A unique forefront science program with continued discovery potential
- Quantify the transport properties of the QGP near T_c using heavy quarks as probes (together with LHC)
- Measure gluon and sea quark contributions to proton spin and explore transverse momentum-spin dynamics of QCD
- High statistics map of the QCD phase diagram, including search for a possible critical point
- Probe internal structure of the most liquid QGP using fully reconstructed jets and resolved Upsilon states as probes (together with LHC)
- Refine the physics program of an EIC with studies of polarized pp and pA collisions in forward kinematics?
- RHIC enabled R&D to retire major risks of eRHIC design

BROOKHAVEN NATIONAL LABORATORY

Additional slides

42

What RHIC will deliver

Campaign 1 (2014-17):

- QCD equation of state at μ_B ≈ 0
- Precision measurement of η/s(T≈Tc)
- Measurement of heavy quark diffusion constant D_{c/b}
- Measurement of x-dependence of nuclear granularity
- Origin of single spin asymmetries
- Δg, flavor dependence of spin in the quark sea

• Campaign 2 (2019-20):

- QCD equation of state at μ_B > 0
- Discovery of the QCD critical point, if within the accessible range

• Campaign 3 (2021-22):

- Precision measurement of q[^](T≈T_c) and e[^](T≈T_c)
- Determine length scale where the QGP becomes a liquid
- Many additional insights we can't even anticipate yet!

LEReC-I (1.6-2MeV): Gun to dump SRF gun used as a booster cavity

LEReC-II (energy upgrade to 5 MeV): ERL mode of operation

